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We present a theoretical study of elastic spin-dependent electron scattering caused by a charged impurity in
the vicinity of a two-dimensional electron gas. We find that the symmetry properties of the spin-dependent
differential scattering cross section are different for an impurity located in the plane of the electron gas and for
one at a finite distance from the plane. We show that in the latter case asymmetric �“skew”� scattering can arise
if the polarization of the incident electron has a finite projection on the plane spanned by the normal vector of
the two-dimensional electron gas and the initial propagation direction. In specially prepared samples this
scattering mechanism may give rise to a Hall-type effect in the presence of an in-plane magnetic field.
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In quantum-scattering theory one of the central quantities
is the differential scattering cross section �DSCS�. In the so-
called S-matrix formalism it is possible to derive the symme-
try properties of the DSCS if the symmetries of the
Hamiltonian—the operators commuting with the
Hamiltonian—are known.1,2 A particular example was stud-
ied by Huang et al.3 They considered the elastic scattering of
two-dimensional �2D� electrons off a charged impurity sit-
ting in the middle of a semiconductor quantum well, taking
into account the spin-orbit coupling �SOC� created around
the impurity. They have found that despite the cylindrical
symmetry of the electrostatic potential created by the impu-
rity, the DSCS can be asymmetric with respect to the
forward-scattering direction, and its antisymmetric compo-
nent is proportional to the out-of-plane component of the
polarization vector of the incoming electron. This effect is
called asymmetric or skew scattering and is reminiscent of
the so-called Mott skew scattering in three dimensions.4–6

This special scattering behavior caused by the SOC
around the impurity can have a directly measurable conse-
quence on the transport of spin-polarized carriers, the so-
called anomalous Hall effect �AHE�. The AHE in bulk met-
als has been in the focus of experimental and theoretical
researches for many decades,7–10 and recent advances in the
field of magnetic semiconductors have increased the activity
within this area even further.11–15

Recently Cumings et al.16 observed the AHE in a para-
magnetic two-dimensional electron gas �2DEG� created in a
semiconductor quantum well, and its appearance was attrib-
uted to the asymmetric electron-impurity scattering. In this
experiment an out-of-plane magnetic field was applied, re-
sulting in the Lorentz force acting on the moving electrons
and a finite spin polarization of the carriers via the Zeeman
effect. The Lorentz force alone would result in the well-
known normal Hall resistivity, but the simultaneous presence
of the finite spin polarization and the skew scattering process
gives rise to an additional anomalous Hall component.

The experiment of Cumings et al.16 has confirmed that the
electron-impurity scattering can contribute significantly to
the Hall resistivity in paramagnetic 2DEGs. Motivated by
this fact, in this work we extend the problem considered by
Huang et al.3 and study the spin-dependent electron-impurity
scattering process in a 2DEG where the impurity might be
located at any finite distance from the plane of the 2DEG.

We focus our attention to the symmetry properties of the
DSCS describing individual scattering processes, and we
show that the properties of the DSCS are fundamentally dif-
ferent when the impurity is located in the middle of the quan-
tum well and when it is at a finite distance from that. In the
former case skew scattering arises only if the polarization
vector of the incident electron has a finite out-of-plane com-
ponent. In contrast, we find that in the latter case skew scat-
tering happens provided that the polarization vector of the
incident electron has a finite projection on the plane spanned
by the normal vector of the plane of the 2DEG and the initial
propagation direction. In the first part of this Rapid Commu-
nication we summarize the rigorous quantum-mechanical
derivation of this result. To provide a simple physical picture
of this scattering process we also present a classical analysis
of the electron dynamics affected by the impurity. Finally, we
discuss a possible experimental setup where the special fea-
ture of the considered scattering process could give rise to a
Hall-type effect in the presence of an in-plane magnetic field.

We consider a 2DEG in the x-y plane created in a sym-
metric quantum well and a charged pointlike impurity in the
position r0= �0,0 ,z0�. The setup is shown in Fig. 1. Assum-
ing that the SOC strength � is energy independent and has
the same value in the quantum well and barrier materials, the
contribution of the impurity to the Hamiltonian is17

Hi = Vi�r� +
�e

�
Ei�r� · �� � p� . �1�

Here r is three-dimensional coordinate vector of the electron,
Vi is the electrostatic potential created by the impurity,
Ei=�Vi /e is the electrostatic field created by the impurity,
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FIG. 1. �Color online� The electron in a 2DEG �represented by
the green/light gray arrow� approaches the impurity located in the
position r0= �0,0 ,z0�. Circular lines represent the equipotentials of
the impurity potential.
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and � is the vector of Pauli matrices representing electron
spin.

We start with the quantum-mechanical analysis of the
electron dynamics in this system. For simplicity the 2DEG is
treated as ideal in the sense that electrons are confined to the
plane. Under this assumption, the system can be modeled by
the following effective two-dimensional Hamiltonian:

H2D =
px

2 + py
2

2m�
+ V̄i +

�e

�
�z�Ēi,ypx − Ēi,xpy�

+
�e

2�
��x�py,Ēi,z� − �y�px,Ēi,z�� , �2�

where for any f � �Vi ,Ei,x ,Ei,y ,Ei,z� we have defined the no-

tation f̄�x ,y�= f�x ,y ,0� and �.,.� denotes the anticommutator.
This form of the Hamiltonian can be derived in a rigorous
way using the standard dimension reduction technique used
by Huang et al.,3 assuming that the energy dependence of the
effective mass m� and SOC strength � is negligible. Note

that the cylindrical symmetry of the electrostatic potential V̄i
and field Ei created by the impurity is retained even if
screening effects are incorporated into Vi.

Having the effective 2D Hamiltonian H2D in hand, now it
is possible to study the scattering of electrons on the spin-
dependent impurity potential. In the absence of the impurity,
H2D has plane-wave eigenfunctions. We will consider the
scattering of the electron plane wave,

����,�� = eik� cos �� , �3�

which has energy E=�2k2 /2m� and propagates along the x
axis. Here � and � denotes the standard planar polar coordi-
nates and � is a normalized two-component complex vector
describing the spin state of the plane wave. We denote the
polarization vector of the incident electron by P0, which is a
three-dimensional real unit vector and is related to the spinor
� by the expression P0=�†��. Here † denotes the combina-
tion of complex conjugation and transposition.

It has been shown18 that in two-dimensional spin-
dependent electron-scattering problems the DSCS can be ex-
pressed as the function of the scattering angle � and the
polarization vector of the incident electron P0 in the follow-
ing form:

�diff��,P0� = c��� + v��� · P0. �4�

Here the dot represents scalar product and the function c���
and the vector-valued function v���= �v1��� ,v2��� ,v3����
are related to S matrix and the scattering amplitude.

It can be shown straightforwardly that the Hamiltonian in
Eq. �2� has three important symmetries: H2D commutes with
the out-of-plane component of the total angular-momentum
operator �Jz=−i���+��z /2�, with time reversal �T= i�yC
where C is the complex conjugation� and with a special com-
bined symmetry of real-space reflection and spin rotation
��yPx, where Px is the spatial reflection with respect to the x
axis�. However, if z0=0, i.e., the impurity is located in the
plane of the quantum well, then an additional symmetry of
the Hamiltonian can be found. Namely, in this case the out-

of-plane component Ēi,z of the electric field created by the

impurity vanishes identically and so does the last term in the
Hamiltonian in Eq. �2�. It means that in this special z0=0
case �z also commutes with H2D, and as a consequence of
that the symmetry properties of the DSCS are different in the
cases z0=0 and z0�0, as it will be shown below.

Starting from these symmetry properties of the Hamil-
tonian H2D in Eq. �2� and following the method using the
S-matrix formalism outlined in Ref. 2, we were able to de-
rive the symmetry properties of the functions c and v appear-
ing in the formula �Eq. �4�� of the DSCS. Our findings are
summarized in the first and second lines of Table I. In the
z0=0 case, in correspondence with previous results,3 we have
found that skew scattering can arise only if the out-of-plane
component of the polarization vector of the incident electron
is finite. This can be deduced using the first line of Table I
and Eq. �4�. On the other hand, a fundamentally different
behavior is found in the z0�0 case when the impurity is
lifted out from the 2DEG plane. In this case, skew scattering
is forbidden only if the initial polarization vector is aligned
with the y axis, and the DSCS can become asymmetric if the
initial polarization vector has a finite component in the x-z
plane �see the second line of Table I and Eq. �4��. In general,
in the z0�0 case skew scattering happens provided that the
initial polarization vector P0 has a finite projection on the
plane spanned by the normal vector of the 2DEG and the
initial propagation direction.

Usually, the symmetry properties of the DSCS calculated
in the first Born approximation �FBA� are more restrictive
than those of the exact DSCS. A particular example is the
z0=0 case considered in Ref. 3, where it has been shown that
the quantity v��� in Eq. �4� characterizing the spin-
dependent component of the DSCS vanishes if the scattering
problem is treated in the FBA. �Compare first and third lines
of Table I.� We have applied a similar analysis in the z0�0
case and found that in this case v��� can be finite in the
FBA. Moreover, we derived its symmetry properties as well
and summarized the results in the fourth line of Table I. To
give a quantitative estimate of the skewness of the DSCS for
an electron having its initial polarization vector aligned with
its propagation direction, we calculated the quantity
v1��� /c��� in the FBA for a screened impurity with charge
Ze. The screening has been taken into account by means of
the Thomas-Fermi model.19 The leading-order result in the
dimensionless parameter �k2 is

TABLE I. Symmetry properties of the quantities determining the
differential scattering cross section in Eq. �4�. S �A� denotes the
quantities which are even �odd� function of the scattering angle �. 0
denotes the quantities which vanish identically as a result of the
symmetries of the system.

Case c v1 v2 v3

Exact z0=0 S 0 0 A

Exact z0�0 S A S A

Born z0=0 S 0 0 0

Born z0�0 S A S 0
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v1���
c���

= sgn�z0��k2 sin ��2 sin
���
2

+
q0

k
	 , �5�

where q0=m�e2 / �2	�2
0�� is the Thomas-Fermi wave num-
ber, 
0 is the vacuum permittivity, � is the dimensionless
relative permittivity of the material, sgn is the sign function,
and �� �−	 ,	�. For the derivation of Eq. �5� we assumed
that q0 /k�1. In typical 2DEG samples the relations
�kF

2 �1 and q0 /kF�1 usually hold for the Fermi wave num-
ber kF, and therefore the scattering of mobile electrons is
well described by the formula �Eq. �5��. For example, in an
InAs quantum well with electron sheet density
ns=1012 cm−2, effective mass m�=0.023m0, relative permit-
tivity �=15, and SOC strength6 �
120 Å2, we get
�kF

2 
0.075 and q0 /kF
0.25. Note that the quantity v1 /c
can be regarded as a generalization of the Sherman function5

used for characterizing the skewness of the spin-dependent
DSCS of three-dimensional Mott scattering.

Now we present a simple classical interpretation of the
derived symmetry properties characterizing the considered
spin-dependent scattering process. In the following we use
the quantum Hamiltonian in Eq. �1� to derive equations of
motion for the observables and otherwise we treat r, p, and �
as strictly classical quantities. Specially, instead of � we will
use the three-dimensional unit vector P.

Consider a pointlike particle in the 2DEG approaching the
scattering center along the x axis with impact parameter b
and spin-polarization vector P0. For simplicity we assume
that the two-dimensional classical dynamics of the scattered
electron is determined mainly by the electrostatic potential
Vi, and the SOC plays the role of a weak perturbation. The
trajectory of the motion affected only by Vi �the “unper-
turbed” trajectory� is given by r�t ,b�= �x�t ,b� ,y�t ,b� ,0�, the
position vector of the particle with impact parameter b at
time t. We assume that at the moment t=0 the particle is
approaching the scattering center but still out of the range of
the potential created by the impurity. Trivially

x�t,b� = x�t,− b� , �6a�

y�t,b� = − y�t,− b� , �6b�

i.e., the unperturbed trajectories corresponding to impact pa-
rameters b and −b are related by a reflection with respect to
the x axis. During the motion the SOC �the second term in
Eq. �1�� acts as an effective inhomogeneous magnetic field
felt by the electron spin: P ·Beff�r , ṙ�, where

Beff�r, ṙ� = −
�em�

�
�E�r� � ṙ� . �7�

The dot �ṙ� denotes time derivative, and we used ṙ=p /m�.
With respect to the spin and orbital dynamics, there are two
important consequences of the presence of this inhomoge-
neous effective magnetic field. First, the spin of the moving
particle will precess around the effective magnetic field. Sec-
ond, the inhomogeneity of the effective magnetic field gives
rise to a Stern-Gerlach-type force which deflects the particle
from its unperturbed trajectory.

For a given impact parameter b and unperturbed trajectory
r�t ,b�, the equation of motion for the spin of the moving
electron is1

Ṗ�t,b� =
1

�
P�t,b� � Beff�r�t,b�, ṙ�t,b�� , �8�

similarly to the well-known Bloch equations.20 If the spin of
the incident particle P0�P�t=0,b� is given, and with this
initial value condition the solution of Eq. �8� is known, then
the Stern-Gerlach force1 can be expressed as the gradient of
the local SOC energy,

F�r�t,b�,P�t,b�� = − ��P�t,b� · Beff�r�t,b�, ṙ�t,b��� . �9�

The presence of this force is due to the presence of SOC
close to the scattering center, and it deflects the particles
from their original, unperturbed trajectory.

We claim that if the spin of the incident electron has a
finite projection on the x-z plane then the presence of the
SOC destroys the reflection symmetry of the motion with
respect to the x axis and therefore gives rise to an asymmetry
in the DSCS as well. This is a consequence of the fact that if
the polarization vector lies in the x-z plane then the compo-
nents of the Stern-Gerlach force fulfill the relations

F1�r�t,b�, ṙ�t,b�� = − F1�r�t,− b�, ṙ�t,− b�� , �10a�

F2�r�t,b�, ṙ�t,b�� = F2�r�t,− b�, ṙ�t,− b�� . �10b�

�Here and henceforth the vector subscripts 1, 2, and 3 are
equivalent to x, y, and z, respectively.� We sketch the steps of
the proof in the following. The definition of Beff in Eq. �7�,
the properties in Eqs. �6�, and the cylindrical symmetry of
E�r� imply symmetry relations of the components of Beff,

�Beff�r�t,b�, ṙ�t,b���k = �− 1�k�Beff�r�t,− b�, ṙ�t,− b���k,

�11�

where k=1,2 ,3. The Picard-Lindelof21 solution of Eq. �8� is

P�t,b� = P0 + �
0

t

dt�
Beff�t�,b�

− �
� P0

+ �
0

t

dt��
0

t�
dt�

Beff�t�,b�
− �

�
Beff�t�,b�

− �
� P0 + ¯ ,

�12�

where we used the notation Beff�t ,b��Beff�r�t ,b� , ṙ�t ,b�� for
brevity. Using Eqs. �11� and �12� and assuming an initial spin
P0� �0,1 ,0�, it is straightforward to prove that

Pk�t,b� = − �− 1�kPk�t,− b� . �13�

Finally, substituting Eqs. �11� and �13� into Eq. �9� results in
Eqs. �10�. A similar analysis shows that if the spin of the
incident electron is aligned with the y axis then the reflection
symmetry between the trajectories corresponding to b and −b
is retained in the presence of SOC, and therefore this is the
only case when skew scattering does not take place. As a
generalization of these results, we formulate the central theo-
rem of this classical analysis as follows: if the initial polar-
ization vector has a finite projection on the plane spanned by
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the normal of the 2DEG and the initial propagation direction,
then the DSCS becomes asymmetric with respect to forward-
scattering direction. Note that this conclusion is equivalent to
the results of the rigorous quantum-mechanical symmetry
analysis presented above.

By repeating the preceding analysis for the case when the
impurity is located in the plane of the 2DEG �z0=0�, and
using the fact that in this case the out-of-plane component of
the electric field vanishes identically, it can be shown that
skew scattering may occur only if the out-of-plane compo-
nent of the initial polarization vector of the electron is finite.
This result is in agreement with the quantum-mechanical re-
sult summarized in the first line of Table I.

So far we have discussed the symmetry properties of the
DSCS corresponding to individual scattering events. Here
we argue that in specially prepared disordered samples this
peculiar scattering mechanism may give rise to an experi-
mentally observable effect similar to the skew scattering in-
duced AHE in spin-polarized systems. The setup is shown in
Fig. 2. The sample for the proposed experiment should con-
tain a symmetric quantum well with an additional delta-
doped impurity layer at a finite distance from the quantum
well. For clarity in Fig. 2 we show only a single impurity. We
also assume that the 2DEG is fully or partially spin-polarized
by a static homogeneous in-plane magnetic field B. If a finite
direct current parallel to the magnetic field is flowing
through this sample, then the skew scattering mechanism
will result in a finite Hall signal despite the fact that the
magnetic field has no out-of-plane component: skew scatter-
ing means that the electrons drifting in the direction of the

driving electric field are preferably scattered by impurities to,
say, the left �right� if their spin is parallel �antiparallel� to the
magnetic field. Therefore in the polarized 2DEG more elec-
trons will pile up at the left edge of the sample than at the
other edge, giving rise to a finite transversal bias between the
two edges. Though quantitative estimates regarding the mag-
nitude of this effect are not presented here, the fact that v1 is
finite in the FBA while v3 vanishes suggests that the pre-
dicted effect should be at least comparable with the anoma-
lous Hall effect16 measured in the presence of an out-of-
plane polarization.
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FIG. 2. �Color online� Proposed measurement setup for experi-
mental investigation of the Hall-type effect if an impurity plane is
present in the sample at a finite distance from the 2DEG plane. The
short horizontal red/gray �blue/dark gray� arrows in the figure rep-
resent spins parallel �antiparallel� to the polarizing magnetic field B.
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